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ELASTOSTATIC SOLUTION FOR A CIRCULAR MEMBRANE
BONDED TO A HALF-SPACE UNDER PLANE LOADINGY
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and

D. B. BoGy

University of California, Berkeley, California

Abstract—The solution is given for the elastostatic load transfer problem of a circular elastic membrane bonded
to the boundary of a materially dissimilar half-space, which is loaded far from the membrane by a state of plane
stress parallel to its boundary.

The problem is reduced to a system of Fredholm integral equations of the first kind, with logarithmic singu-
larities in the kernals, for the unknown bond force between the membrane and the half-space. These integral
equations are solved exactly and the solution of the problem is obtained in the form of elementary functions for
the limiting case of an inextensible membrane. For the elastic membrane the integral equations are handled
directly by numerical techniques and the perturbation of the uniform stress field due to the attached membrane
is obtained numerically for several combinations of the material and geometrical parameters.

A certain ratio of the membrane to half-space strain is computed which gives an indication of the accuracy
of strain measurements obtained in experimental stress analysis by the use of bonded gages. These results indicate
that the “‘average strain” in the membrane is close to the far-field half-space strain only when ua/fih > 100.
where fi, h, a are the shear modulus, thickness and radius of the membrane and g is the shear modulus of the
half-space.

1. INTRODUCTION

THE problem of a thin circular disk attached to a half-space under plane biaxial loading at
infinity is solved within the theory of linear, isotropic and homogeneous elastostatics. The
disk is assumed to have no bending stiffness and is treated as a two-dimensional continuum
in the sense of generalized plane stress (i.e. as an elastic membrane). It is assumed to be
perfectly bonded to the half-space, which has elastic constants different from those of the
membrane.

A complete discussion of the numerous load-transfer problems solved previously is
beyond our scope. A general lecture and accompanying paper by Sternberg [1] gives a
thorough discussion of several load transfer problems recently solved by Sternberg and
Muki. This paper includes numerous references through which many of the important
historical developments on load-transfer problems can be traced. The works by Bufler [2],
who treats the problem of a finite elastic bar bonded to the edge of an elastic half-plane,
and by Aleksandrov and Solov’ev [3], who consider an inextensible elliptical membrane
bonded to an elastic half-space, are more closely related to the problem considered here.

t Based on the doctoral dissertation of M.A. Hamstad in partial fulfillment of the requirements for the Ph.D.
degree in Engineering, University of California, Berkeley.
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One important contribution of the work outlined in [1] is the rational treatment there
of a phenomenon, which was observed previously by Reissner [4] in connection with load
transfer from a bar to a sheet and by Goodier and Hsu [5] for two overlapped sheets, that
concentrated forces may be transmitted between the bonded elastic members at the
boundary of their contact region. The possibility that such concentrated loads may occur
should not be precluded in the formulation of the problem, and this question need not be
settled on the basis of physical arguments. Instead, it should be resolved by an analysis of
the integral equations governing the load transfer functions.

In addition to its theoretical interest, the elasticity problem worked here has practical
application especially in the field of experimental stress analysis. When a strain gage is
bonded or a strain sensitive coating is applied to the surface of an elastic body, the state
of stress in the vicinity of the attachment is altered. The extent of this reinforcement clearly
depends on the relative stiffness of the body and the attachment. When the stiffness of the
gage or coating is relatively small, the disturbance of the stress field is also small and can
be accounted for by the use of standard calibration experiments. But if the attachment has
considerable stiffness relative to the elastic body, its local effect can be quite significant,
and what is more important, the effect can vary widely with the experiment so that a
calibration based on a standard test cannot be used for different experiments. Faced with
this problem it is important to know how the reinforcement effect depends on the relative
stiffness and how this effect decays with distance from the attachment.

The methods used in treating the problem stated in the first paragraph will be briefly
outlined. First, the problem is formulated mathematically and the general plane loading
at infinity is decomposed into two cases: isotropic stress and pure shear. Then auxiliary
membrane and half-space solutions are written in terms of the unknown transfer functions,
which include the possibility of concentrated load transfer at the edge of the membrane.
The integral equations governing the load transfer functions are then derived by the use
of these solutions with the bond conditions. These integral equations are first examined
in order to determine the concentrated edge loads. Then for the special case of an inex-
tensible membrane the integral equations are solved exactly, and the stress and displace-
ment fields are determined in the half-space in terms of elementary functions. For the
elastic membrane under isotropic loading the singular integral equation of the first kind is
solved directly by numerical methods for various values of the material and geometrical
parameters. This numerical solution is then used in the numerical computation of repre-
sentative stress components in the membrane and the half-space. These latter results are
illustrated graphically to demonstrate how the effect of the membrane on the stress field
in the half-space decays with distance from the membrane. A ratio of an average membrane
strain to the far field half-space strain and its dependence on the parameters is also illustrated
graphically.

2. FORMULATION OF THE PROBLEM

Let R and R denote the open half-space and the open disk of radius a, and let = and #
represent their boundaries (see Fig. 1). Then

R = {x|x; > 0}, R = {x|x3+x% < da® x; =0},

2.1)

T = {X|x; = 0}, ft = {x|x3+x} = a* x5 = 0}.
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FiG. 1. Half-space and attached membrane.

It is also convenient to define the set 7 as

7= {x|x}+x3 > a® x; = 0}, (2.2)
so that

r=RUAU* (2.3)

Assume that R is occupied by an isotropic, homogeneous and elastic solid characterized
by shear modulus y, and Poissons ratio o, while R is the cross-section of the thin cylindrical
domain of height h with elastic constants 2 and é. Let {u;,0;;,¢;} denote the three-
dimensional displacement, stress and strainAﬁeIds on R and [d,, 6,4, &,;} denote the cor-
responding two-dimensional quantities on R, which are to be interpreted as the thickness
averages of these fields on the thin cylindrical domain in the sense of generalized plane
stress. Then the field equations of linear elastostatics appear in cartesian form ast

g
o-ij,j = O, oij = zﬂl:(—l"—_—zg)gkkéij‘f”sij], (24)
& = %(ui.j-"uj,i)’

+ Summation is implied by repeated indices. The range of Latin indices is (1, 2, 3) and that of Greek indices
is (1, 2).
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on R, and

p YRR .
Gupptfi=0, Gy = 2u[(m)gw5a,,+sa,,}, (2.5)

A 1o A
oy = 2l +115,),

on R, where f, denote the body forces for the membrane which arise as a result of the
bond condition as will be seen later on.
The boundary conditions, bond conditions and regularity conditions are

hﬁ+ ha’rrlr:aé(r _a)_ O, = 0’

hfy+ hé ), 0r—a)—o.4 =0, 6.. =0, onn (2.6)
where
f.=f,=0 onf, (2.7)
and
o, = u,, 0, = uy,fi, =u, onR, (2.8)
G11 = 01,035 = 0,012 — 0, g3;,—20 as |x] - ocinR. (2.9)

Equations (2.6), (2.7) imply the conditions of vanishing tractions on the half-space outside
the area of contact as well as the equilibrium of the force transmitted between the mem-
brane and half-space over the contact area R. The appearance of the delta function in (2.6)
reflects the possibility that the half-space and membrane may transmit a concentrated
ring-load to each other along the ring r = a.t The f, and f, appearing in equations (2.5)-
(2.7) arise from the unknown load transfer forces between the membrane and the half-space.
These quantities appear as body forces in the two-dimensional model of the membrane.
Due to the fact that the membrane has no bending stiffness, no force can be generated at R
by the assembly in the z-direction, and i, can assume any value. Hence, the condition
i, = u.in (2.8) places no displacement boundary condition on the half-space, and therefore
the bond condition in this direction merely becomes the normal traction condition on the
half-space. Equation (2.9) expresses the fact that the loading on the half-space is a plane
biaxial stress field far from the membrane. The coordinate axes have been chosen to
coincide with the principle directions of this plane stress field, so that ¢; and oy are the
prescribed principle stresses.

In order to solve the boundary value problem governed by equations (2.4}-(2.9), it is
convenient to first consider two special cases of the loading which can then be appropriately
combined (due to the linearity of the governing equations) to produce the required
solution. Thus let S be the required solution and let S, and Sy be, respectively, the solutions
to the above problem for the following two special loading cases.

S4i00 =0y = 0y, (2.10)
Spioy = —oy = 0y,

+ 1t is important to note that we cannot know a priori whether or not the membrane and half-space load
each other along this circle. Indeed this question must be answered by the solution. For a discussion on this
point see [6] where an analogous situation arises in connection with load transfer from a one-dimensional tension
bar to a two-dimensional elastic sheet.
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where o, is a constant. It may be observed that S, and S correspond, respectively, to a
plane isotropic state of stress (i.e. no #-variation) and to a plane state of pure shear at
infinity. One can easily verify that solution § satisfying the loading condition in (2.9) is

_ (01400 (o1—on)

S.+

S
204 20,

S, (2.11)

for arbitrary o, and oy;.

3. AUXILIARY MEMBRANE AND HALF-SPACE SOLUTIONS

The next step is to obtain some auxiliary solutions for the circular membrane and the
half-space both loaded on the disc R and the ring #. These loads, which are transmitted
from one body to the other, are unknown but satisfy (2.6), (2.7). The displacement condi-
tions in (2.8) will eventually be used to generate integral equations for these unknown
transfer loads.

Let the loads transferred to the membrane be defined by (see Fig. 2)

6, = p,/h, G, =pe/h onft,
P 3.1)

e = a,/h, fo=qy/h onm

p18), pyl8). - FORCE/LENGTH
q,{r.6),q,4(r.6) - FORCE / AREA

(6} FORCES ON MEMBRANE AT BOND SURFACE

X
2
{b) FORCES ON HALF-SPACE AT BOND SURFACE

FiG. 2. Bond forces on membrane and half-space.
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Then from (3.1) with (2.6) and (2.7) the loads acting on the half-space are

Oz = pra(r_a)-*_qr’ G = pﬂé(r_a)+q0’
g,, =0,

on 7. (3.2)

Because of the symmetry of the geometry and the functional form of the applied loads
the functions p,, p,, g, and g, in (3.2) have a known dependence on 8 for cases 4 and B; for

case A:
pA0) = p, pel0) = 0,
! (3.3)
q,(r,0) = q(r),  qe(r,0) =0,
and for case B:
(0) = p, cos 20, 0) = p, sin 26,
pA0) = p, pe(0) = p, (3.4)

q,(r,0) = q1(r)cos 20,  qy(r, 0) = q,(r) sin 20.

Membrane solutions

We now list the solutions for the membrane under the loads given by (3.1) with the
special forms in equations (3.3) and (3.4) which are appropriate to S, and Sj.

Case A4

2i4,(r) = ja L(r, t)g(t) dt + L(r, a)p,

0

6,(r) = fzwbzﬂmﬂdt+hﬂnanh
0

(3.5)
) = | N, 0a(0 e+ N .
ty = 8,9 = 0,
where
Hr 0= H(t_')(liza)’+H(r_t)(lz—h&) t 2h(1+a)(ctl)2
M(r, 1) = H(t—r)(l;l&)—H(r—t)(lz_h&)(;)2+( ;h )(2)2, (3.6)

7] 5 A 2
Nm”::Hﬂ—ﬂugfx+HU—ﬂ0;fw32+“;f%3-

The functions L, M and N in (3.6) give 2fii (r;t), ,{r; t) and G44(r;t) for a membrane with
a concentrated ring body force of magnitude 1/h, acting in the positive radial direction
on the ring r = t and with vanishing tractions at #i(r = a). This solution satisfies the condi-
tion of continuous displacement at r = ¢, provides a unit jump discontinuityt in hé,, at

t A step function at r = ¢ in &,, corresponds to a delta function in the body force f,.
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r = t, and satisfies &,,(a;t) = 0. The function H(x) is the usual unit step function and is

defined by
Hox) {0 ifx <0 3.7
=0 x>0 |
Case B:
M = 1,,(7' 1)qa(t) dt+ Lla(r’ a)pa’
cos 20
28340.0) _ " L, 7, 000 dt+ Lo, alpa,
sin 20 Jo
{)‘"(I‘, 9} = Ma(r, t)qa(t) dt+ Ma(ra a)pa » (38)
cos 20
Folrs0) _ " N, 0q.0) At + Nofr. a)pa,
cos20
ar.ﬂ(r’ 9) — {‘ Oa(r, I)st(t) dt + Oq(r’ a)pa’
sin 260 Jo
where
&r gt 12
] +H(r— )[ 67313 7]

hL 4(r,t) = H(t—1) [2 61

a

& (1+o) ' S[1)_30+6)(1)2
+’2 E 3(1+Ga Nal 74 \d |
1-8) &0 3461t 182
hLu(r,t)zH(t—r)[~—(——4 )r—%r—z] Hir—0)| 12")%—57]
G+a)(* 1+e[)?],. & P (1), 30+0)
AP S e el 5 ]

-

4

6) a
r (3+6)r gt (1-9) 2
tz]*‘H(""["a;i‘ 3 7]

hLy(r,t) = H(t—r)[—~§+ 3

|t “+3(1+6)(£)2],
a

|

+r[§(£)4_(1+&)(5)2]+(3+a) » _U(_

2\a 2 \a 3(1+6) d? a 3
+r[—“f)<z>“+“:@<én+;a: salesnly -2

e < #2eme-o SO T 2]
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P (1+6) ()2
el

4

Bra) [\ (1+8)(1)?
+ 4 \a 2 la |

hM y(r, 1) = —H(tr)(l;ﬁ+H(rwI)|:—(3+@(,;

2 ) 1 +8)[ )2
[l el 56 )
1 (1+6)(r|? [6(t)* ) t\?
hOl(r,t)=H(t—r)l:—2+ 4 (Z) ]+H(r—1) 3 ;) —A4 "le
alt\* (1+6)ft)\? AT +8)[t)\?
T2l T2 ;}a[“’) (J

1_* A 2 A 4 2
WO o) = Hu—n| 4”)+”I")(:) }+H(r—t)[—(3jg)(£) +(]:6)(§) ]

G+a)(\* a+a)(1\2] (A [G+a () A +8)(r)?
LSS TS ]

4

The functions Ly,, L,,, M,, N, and O, in (3.8) and (3.9) give 2ad(r, ¢; t)/cos 20,
2fidg(r, 8;t)/51n 20, 6,(r, 0; t)/cos 20, G g4(r, 0 t)/cos 28 and &,4(r, 0; t)/sin 26 for a membrane
with concentrated ring body forces acting in the positive radial and tangential directions
at r = t with cos 20 and sin 260 variations in § and with vanishing tractions at #. This solu-
tion satisfies the condition of continuous displacements at r = ¢, provides a unit jump dis-
continuity modified by the appropriate 8-variation in hé,, and hé,, at r = t and satisfies
8,(a,0:1) = 6,4a,0;1)=0.

Half-space solutions

In order to use existing half-space solutions which satisfy the condition of vanishing
stress as |x] — o0, it is first necessary to separate appropriate uniform stress fields from the
half-space solutions sought here. Thus on R, let

{65, 0458 = {ui, el o) +{uf, &, 0l (3.10)
where for case A:
e e
U G u o
(3.11)

” ’
CGpp = 00s 0.89 = 0y, o.r,ﬂ = 0’ G;’z = 0’
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and for case B:

o Go .
u' = =2rcos 20, uy = —=rsin 20, u, =0,
2u 2u
) (3.12)
6, = 0¢cos 20, Ggg = — 0o COS 20, G,y = —0gsin 20, a;, = 0.
These fields are half-space solutions which satisfy the loading conditions appropriate to
S, and Sy at infinity and induce no tractions on 7.

In view of (2.6)-(2.10), (3.2)«3.4) and (3.10)3.12) the residual half-space problems

for {u;, ;;, o};} are governed by the boundary conditions
case A:

o, = pd(r—a)+q(r), oy=o0,.=0o0nn (3.13)
case B:

a,, = [p16(r—a)+q,(r)] cos 20

) onrm (3.14)
00 = [P20(r—a)+4q,(r)]sin 260, o, =0
and for both cases the regularity condition
;=0 as|x| - . (3.15)

The solution to the above traction boundary value problem for the half-space can be
obtained from Muki’s [7] general solution for arbitrary shear loads on the boundary of
a half-space and can be written as

case A:
a

2uu(r, z) = J J(r, z,)(t) At + J(r, z, a)p,
0

2uu(r, z) = J K(r, z, t)gq(t) dt + K(r, z, a)p,
0

o,(r, z) = f A(r, z, )g(t) dt + A(r, z, a)p,
0

(fa 3.1
Goor2) = | B, z 0a(e)dt +B(r, 2, a)p, (3.16)
JO
oidrz) = | C(r,z 0q() di+C(r 2 ap,
JO
ouir,z) = | DU, z, () di+Dir, 2, ap,
0

o

’ ’ [
Og, = G, = g = 0,
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where
J=(=g)(I9—1°)—zI}/2,
A=2Iy—zI}—J/r,
C =z},

in which

K=—(1-20)1%—2z1I},
B =2¢l}+Jr,

D=1+ +=Ii-T1% )2,

If(r,z,1) = —tJm e LRI (End (&) de,

0

and J (x) is Bessel’s function of the first kind of order ¢q;

case B:
2uuy(r,0,z) [°
PRI NS A t
cos 29 Jo Jla(rv Zs )qa(t) dt+J1m(r’ Z, a)pan
2uuy(r,8,z2)  (°
3 = J, Jour 2, g, (0 de + J5,(r, z, a)p,,
2ui(r,8,zy (¢
Y » &y P t FASER as
o5 20 “oKa(rzr)q(t)d + K (r, z,a)p
o029 [
Teos20  Jo Afr, 2, 0q,(t) dt+ A(r, z, a)p,,
6;)8("5 65 Z) &
22 2 = | By(r, z,0)q,(t) dt + B,(r, z, a)p,.
ozp = |, BArm 000 dre Bz a
21, 0,2) _ f C,(r, 2, 0q,(8) de + C,fr, 2, a)p,,
cos 20 0
o441, 6, 2) J’“
220 B2 | D, 2, 0q,(1) A+ D, z, a)p,,
<in 20 . W15 2, 1)q,(t) dt + D, (7, z, a)p,
a.(r, 0,z) f"
TS A t+E s & s
30 = | EAn a0 dek EG,zap
o,q(r, 0, z) a
— = z, gty dt + Fir, z, ajp,,
T JO Fr,z, t)q,(t) dt + F(r, z, ajp,
where
2—0). o atpron_ @ 0 @ 10
Jup = TKS + (= P11 = S((= 1PIS + (= 1PKY)
— 2= DPI (= D2 T K + (= 1PK ),
(1-20) z
K, = — [(—1)"12+K§]—5[(—1)°‘I§+K§],

2

(3.17)

(3.18)

(3.19)
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1
A, = (- 1PL+K; ~§[(— 1713 +K§]—;{(2—a)[3K§+(— 1719
r
~a[(—1F313+K7] —%[(— 315 +(= 1"+ 3K5+ K1},

B, = of(~ 1V I}+ Kil 4 {(2~ ) 3BKS+(~ 71%)

(3.20)
—ol(— 1318+ K= [(= IFI3 +(= 17" 1+ 3K} + K1),
C, = SU-1r3+K3),
D, = —HK3+(=IPI+ 2~ IPB3+ K3+ (=PI + K1),
E, = =K} +(— 1P 42 (- PB4+ K3 +H(- D =K,
1
Fo = H(= 17" 3+ K3 =2 {2 — o) B3RS + (= 1 119]
—ol(— 17313 - K§] =3[~ 1313 +(~ 171} + 3K} - K1},
in which
Kir, z, 1) = —tf e LT 5(End (Er) dE. (3.21)
0

Clearly from the form of (3.16) and (3.19) the functions J, K, A, B, C and D in (3.17) and
Jous> Ko Ayy By, C,, D, E, and F, in (3.20) can be interpreted in terms of solutions for
concentrated ring loads applied to the surface of the half-space at r = t. This interpretation
is similar to that made for the membrane solutions (3.6) and (3.9).

4. INTEGRAL EQUATIONS FOR LOAD TRANSFER FUNCTIONS

The membrane and half-space solutions given in (3.5)+3.9) and (3.16)~(3.21) in terms
of the unknown loads, which arise on each member due to the mutual transfer of bond
forces, satisfy for the original problem the conditions (2.6), (2.7) and (2.9). The next step
is to derive integral equations governing the unknown load transfer functions by requiring
that the above auxiliary solutions satisfy the only remaining condition, namely con-
tinuity of displacement in (2.8). We obtain in this manner from the displacement formulas
in (2.8), (3.5), (3.6), (3.8)(3.12) and (3.16)3.21) the following equations:

case A4:

2u 2u(1 +0)

L(r,a)
24

I re 2, 1-
lim {——f J(r, 2, )g(t) dt+J(r z a)p} +ao( o)
z-0 2/1 0

1 a
= ‘Af L{r, t)q(t) dt + p for0O<r<a, 4.1
2l
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case B:

z—0

1 r |
hm ———J- Jo(rs 2, )q(t) dt +—J 4(r, 2, a) }
{2# ) dg 2" D

e Lo,
(=112l '_*J Lor, z)q,,(t)dt+i(2’ﬁ—“)ﬂ for0<r<a (42

2u 2p o
It would be desirable at this point to interchange the limiting process z — 0 with that
inherent in the integrals in (4.1) and (4.2). Normally this could be done formally and the
solution could be obtained subject to a posteriori verification. However, equations (4.1)
and (4.2) are somewhat unusual in that the quantities p and p, as well as q and g, are,
at present, unknown. That is, the question of whether or not the membrane and the half-
space transmit forces to each other along the ring r = amust be settled from these equations.
But this question is related to the singular nature of the unknown functions g and ¢, and
the kernel functions in (4.1) and (4.2). Therefore it is necessary to make certain assumptions
about the functions ¢ and g, and, then on the basis of these assumptions, to show that the
interchange of limits is permissible. Thus we assume the functions g(r) and q.,(r) have the
form
4ir) g
Fa—rp " Earp

y=12, 0<apa,p,<l,

q(r) = , (no sum)

4.3)

where §(r) and §,(r) are uniformly Holder continuous on [0, a]. This assumption implies
that
qir)=0(r"% asr —0, Olla—r)"#] asr—q,

4.4)
g,(r) = O(r~>) asr -0, Olla—r) %) asr—a,
and insures that g and g, are integrable on [0, a].
If use is now made of the identity (see Ref. [8])
© 1 2242412
& = ; . 4.
[ e enas - o QW( . ) 45)

where Q,(x) is Legendre’s function of the second kind, as well as the identity (see Ref. [9])

%0

J e (eb)e v de - —4§J JEa(eb) e g
0 0

(4.6)
* 4z [*

+3J Jy(a)J 1 (Eb)e™ & dé—fj J(Ea)d,(Ebye™ " d¢,

° 0

then, from (4.3), (3.17), (3.18), (3.20) and (3.21) one can justify taking the limit z — 0 inside
the integrals, and the integral equations (4.1) and (4.2) become

case A:

Ja {J(r, 0,0-2L(r, z)} q(t) de+ {J(r, 0,a)— 2 Lr, a)} P
0 H H
oo(1—0)

(1+0)

r, 0<r<a, 4.7
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where
2 [P +41?
J(rs 07 t) - —(1—6)“7; ﬁQ%(T)! (4'8)
case B:
¢ J 7
J\ {‘]aﬂ(ra 0’ t)"‘;&Laﬁ(ra t} Qﬁ(t) dt+ {Jaﬂ(rt 0: a) -ELaﬂ(rﬂ a)} Ps
0
= (=1Po,r, O<r<a, 4.9)
where
. Q-0 & [P4r? N N
"aﬂ"‘*"")‘*zr[ e W R
% 2 42 4 2, 42
B PEPIVE LGP i BPTIRTY SR LS Lt
275[( D ri % 2rt +=D r* % 2rt (4.10)
At [P LN P
+<"“”,TQ%<—27)+““ ?Q%(“‘”“zn ~

5. INVESTIGATION OF KERNELS AND DETERMINATION
OF UNKNOWN EDGE LOADS

In order to determine the unknown edge transfer functions p and p, appearing in the
integral equations (4.7) and (4.9}, one must first study the singular nature of their kernels
given by (4.8), (4.10), (3.6) and (3.9). Clearly from (3.6) and (3.9) the parts of the kernels given
by L and L,; contribute only finite discontinuities. If x is defined by

r* 412
X = 5 (5.1)

then the singularities in the remaining parts of the kernels can be found by examining
their behavior as x — oo (corresponding to r — 0 or t — 0) and as x — 1 (corresponding
to t — r). From the results in [10, pp. 37, 153, 196] it follows that

Q.x) = O(x~ """ as x — a0,

1 -1 52
Qv(x)= *Eln(xz )—)’“‘/’(V+1)+0(1) as x — 1, ( )
where y is Euler’s constant, and  is the psi function, which satisfies the identity
n—1 1
Yn+d = —7y-2In2+2 Y —— n=12.... (5.3)
1=

0 20417
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Therefore from (4.8) and (4.10),

J(r,0,1), J 4(r,0,t) >0 asr—-0 ort—0,

J(r,0,:)=2(1_")[n|’_" :I+0(1) ast—r,
¥i9
(5.4)
ft—r| Oup
0,) ={In——=2In2} {2—0o[1 + (=11} 2
1o 0.0 = {in T 2m 2 ot 1)
2—o0)] 23 14
+( ?) (1) ——Eéa,,,(—l)“+1 o(l) ast—r, nosum.
i 15
Let G(r, t) and G,4(r, t) be defined through
2l—o0), |t—r1|
G = 0,1)— ] ,
(r,0) = J(r,0,0) ——lno—
(5.5)

14
(— )’“]}?‘ﬂ, no sum.

Guplr, 1) = Jpplr, 0, 1) —

Then from (5.4) and (5.5) G(r, t) and G,4lr, t) are bounded and continuous on 0 < r < g,
0 <t < a and for any fixed direction of approach they have a well defined limit as
(r, ) = (0, 0). In particular

Glr, 1) = 2(1;“)(—2111 242), G0, 1) = 0

—2In2 2-0)[23
Gaﬂ(r,r) {2 O'[l+( a+l]}6aﬁ (TE )[15 ( 1)u+ﬁ]
(5.6)
14
—%51,;(— 1P+ 1, Goyl0,8) = 0, no sum.

Using (5.5) in (4.7)(4.10), recalling the properties of G, G,;, L and L,; and of g and ¢,
given in (4.3) and (4.4), we obtain for

case A:

A1-0), la—r

p+0(1) =0 asr —aq, (5.7)
7 a+r ]

case B:

ln|a_r{2—0[1+(—1)““]}§55p,, +0(1)=0 asr—-a, nosumona (5.8)
a+r T

These equations imply that
ppy =0, (5.9)



Elastostatic solution for a circular membrane bonded to a half-space under plane loading 15

(since ¢ is restricted to the range —1 < ¢ < %) and, hence no concentrated line-load
transfer between the membrane and the half-space occurs at the ring » = a. The resulting
integral equations now appear as

case A:

“[,d=a) [t—7 7 __ooll—0)
J;) |:2 - In P + G(r, t)—ﬁL(r, t):|q(t) dt = ﬁ(l+o’) r, 0<r<a, (5.10)

case B:

a 2(1— t—
J |:———( 9) In L—rléll,—G“,(r, t)+EAL1,,(r, t)]q,,(t) dt = a1,
0 n t+r A

(5.11)

a 2. |t—r U
L [— ;ln H—r(szﬁ—Gzﬂ(r, tH_ELZﬁ(r’ t):lqﬁ(t) dt = —oyr, O0<r<a.
These are Fredholm integral equations of the first kind with logarithmically singular
kernels.

6. EXACT SOLUTION—INEXTENSIBLE MEMBRANE

The integral equations (5.10) and (5.11) can be solved exactly, and the complete solu-
tion in the half-space can be obtained for the limiting case of an inextensible membrane,
i.e. when fI — co. In this limit the kernels are considerably simplified. At this point it is
convenient to return to equations (4.7)(4.10) with p and p, zero. Hence the integral equa-
tions become

case A:
’ _ _%dl-0) 6.1
L J(r,0,t)q(t)dt = 110) r, 6.1)
case B:
r Jop(r, 0, )q4(t) dt = (—1)a,r. (6.2)
(0]

Next assume (subject to later verification) for the inextensible membrane that g, and ¢,
in case B are not independent, but satisfy

42(t) = —q4(t). 6.3)

Then the pair of integral equations in (6.2) reduce to a single equation, which is of the
same form as integral equation (6.1) for case A. Hence for both case 4 and B the relevant
integral equation is

fﬂ J(r,0,8) f(r)dt = cr, (6.4)
0
where for
case A:
o _ ao(l — o)

S = q(), 10’

case B: (6.5)
_20’0(] —0)

J@) = q4() = —q(1), ¢ = 2—0)
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By (4.5) and (4.8), equation (6.4) can be written as

“ © cr
g s @ndel dr = - (66)

o 0 2(1 —o)
This integral equation can be inverted by use of equations (3.1), (3.2), (5.1) and (5.13), given
in Popov [11]. The use of these results with (6.5) and (6.6) leads to

case A:
20,4r

T T

case B: (6.7)
do4r

qi(r) = —q,(r) = Wm-

This result for case A is in agreement} with equation (39) of [3], which considers by an
entirely different method an inextensible elliptical membrane bonded to an elastic half-
space. The results in [3] can aiso be extended to produce agreement with those in (6.7)
for case B.

The displacement and stress fields in the half-space now follow from the use of (6.7)
in (3.16){3.21), and after an interchange of the order of integrals followed by the use of
(18, p. 688]

“ 2 . @Td),,
JoiartE o= 5 e
5 in(¢a) (6.8)
sin{éa
J = S —cos{éa) |,
s(za) (Réa [ 7, oSl )}
they appear as
case A:
p god 1, 2 g
=297 1 91— it
u,.(?”, Z) ﬂ(l"*’ﬁ)ﬂ[ 2‘( G)HO+23H1]’
/ — 0’061 _ 4] EHO
uz(r’z) ,LL(1+0)TCI:(1 20)H0+a 1:|a
, 2004 2 0, ~0)  Z 0 Z oo
O‘rr(r,z)——"ﬁ(].;t”—)[—ng"‘ ; H0+a2H2 TraHl 3
{6.9)
, _ 204z o
S

’ — 260 1 z 1
Grz(r3z) - 7((1+0)[H1 (IHZ L]

204a 20 2l —o) z
& Hi+-—H}|,
n(l+a)[ ! ° ‘}

a r 2ra
+ The agreement follows after some obvious algebraic sign errors in equation (39) of [3] are corrected.

O'fm(", Z) =
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case B:
2 2
W 0.2)= — 220900201 ps 0oL+ Z(H 4+ HY |
un(2—oa) 2a
2 in 20
uylr,0,2) = — 2T GHY—(2—0)HY +—(H}—HY) |,
un(2—o) 2a
2 20
w(r,0,2) = — 205U _oomz 4 ER? |,
un(2—o) | a
4 20 2
o0,z = ) 2y 30 Ry Dy (amieny |,
M2-0) | 2ra
) dogacos20[ 20 3o (2—o0) 3z z
699(7’,0,2) = —h ——I'I2 _HO —r'H(l)‘f‘mH?—'z?[lHi], (610)
4 20
o, (r,0,2) = M
na(2— o)
oodr0,2) = 2"°“S‘“29[ +H;)],
2 2 2
oidr 0.2 = 220N 2 3oy |,
(2 — o) a
, 4ooasm29 , 30, 2-o0) 3z,
0',.9(",9,2) (2 0') |: Hl H Ho_zraH —2r H
where
H,,"‘(r,z)zj & 1( 7 —co Srf) ( )e sladE z > 0. (6.11)

The integrals in (6.9}(6.11) have been evaluated exactly in terms of elementary functions
and are given in the Appendix.

The a posteriori verification of the solution given here easily follows provided due care
is given to the evaluation of the boundary conditions. Some of the integrals in (6.10) do
not converge when z = 0, but their asymptotic values as z — 0 are found to be such that
the solution takes the proper boundary values as z — 0.

7. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS
FOR ELASTIC MEMBRANES

When the membrane is elastic, the integral equations (5.10), (5.11) for the load transfer
functions must be solved numerically. For brevity we restrict our attention henceforth
to (5.10) only, i.e. to case A (isotropic stress at infinity), but the techniques used apply
equally well to (5.11).

Several techniques have been developed to overcome the difficulties arising in the
numerical treatment of equations of the first kind [13-16]. The method we employ [16]
replaces an integral equation of the type

1
j K(x, y)f(y)dy = g(x), (7.1)

0
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by one of the type
1

af (x, oc)+f K(x, y) f(y, ) dy = g(x), (7.2)
O

in which « is a parameter. This equation of the second kind can be successfully handled
numerically to give f(x, a) for various values of o, and the desired solution is obtained in
the limit as a — 0 (see [16]). Although this technique in theory produces the desired result,
the value of « # 0 needed to give a solution of (7.2) sufficiently close to the solution of (7.1)
is not known. Hence the practical application of this technique depends on the rapidity
of the convergence in «.

Before proceeding to the numerical solution of (5.10) it is convenient to put the equation
in non-dimensional form and to define a new unknown function which is not singular.
Since the singular part of the kernel in (5.10) is the same as that in (6.6) for the inextensible
case, the singular nature of the solution of (5.10} is assumed to be the same as that in (6.7).
Thus, let

p=rfa, (=tla, n=uh, y=hia, (7.3)
and define ¢(p) by

Plplog
TR (7.4)

in which ¢(p) is assumed to be continuous for p in {0, 1]. It should be noted that g(r) in
(7.4) is a special case of the form previously assumed in (4.3).
A final change of variables

T=(1-0%  c=(1-pF  ¢p) = O
gl 7;0) = G[(1 —A)a, (1 —1%)a), I(t,7;8) = yL[(1 =PH)a, (1 —1%)a]

removes the power singularity which arises in the integrand of (5.10) and yields in the
place of (5.10)

J— L 2
2(1 9) [3 il }umdwj [g(m a)——f(w 63]%)‘“

S Uit T (7.6)

glry =

(1.5)

By use of standard techniques (see [19]) equation (7.6), with the additional term a®{, &)
to put it in the form of (7.2), is replaced by a system of linear algebraic equations in which
the integrals are replaced by appropriate quadrature sums. The integral with the logarithmic
term is approximated by replacing ®(z, «) by a function that is piecewise linear in [0, 1]
(i.e. linear over each partition of [0, 1]). Then the integration can be carried out analytically
over each partition. The second integral is approximated by a quadrature formula using
the trapezoidal rule. The resulting equation is then evaluated at each of the nodes of the
uniform range of integration.

The numerical solution for ®() was obtained for various values of the material and
geometrical parameters #, y, defined in (7.3), and the two Poissons ratios g, &. Since # and
y appear in (7.6) only through their ratio, n/y, which is a measure of the effective stiffness
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of the half-space relative to the stiffness of the membrane, the three parameters, n/y, o
and &, are sufficient to reveal the effect of the materials and geometry on the load transfer
function.

Satisfactory convergence of the numerical computations was obtained by use of fourteen
intervals in the quadrature formula for all values of the parameter «. The convergence
in o was such that suitable results were achieved with o = 0-0001. With this number of
intervals and value of o, ®(, @) for = 0 was in agreement to within 1 per cent of the exact
results given in Section 6 for the inextensible membrane.

It was found by taking advantage of the result} ®(1) = 0 that the numerical solution
of (7.6) was stable, i.e. the correct numerical solution was obtained from the above tech-
nique with « = 0. This stability of solution is evidently due to the presence of the mildly
singular kernel in (7.6). This result significantly reduced the amount of computation for
the elastic membrane solutions, since a sequence of solutions for various values of o was
averted.

The function ¢(p) defined in (7.4) is shown in Figs. 3-5 for various values of /y, ¢
and é. Figure 3 shows the dependence of ¢(p) on 5/ for fixed o and 6. The curvefory/y = 0
agrees with the exact results in Section 6 for an inextensible membrane. Figure 4 shows the
dependence on o for fixed n/y and é and Fig. 5 shows the result when & varies for fixed
n/y and o.

032 o=, &= -1
L n/¥= pasfih |
028 RIGID -
B MEMBRANE
024
2020~ n/8=0 -
016 ]

alriyi=-p/
1

042

008

004
b WEAK
MEMBRANE

0

0 0-2 04 06 (03] -0
P=r/a

FiG. 3. Dependence of load transfer function on p for various n/y—isotropic loading.

1 One can verify from the half-space solution in [7] that when the boundary loading is on the circular region
R then non-zero shearing tractions at r = 0 are identified only with solutions that have a §-dependence of cos §
or sin 8.
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T T T T T T T T

0181~ q/y=pa/fin=10
— A )
g =14 ]

016

006
004

002+

0 L |
0 02 04 06 08 0
P=r/a

F1G. 4. Dependence of load transfer function on p for various o.

8. NUMERICAL COMPUTATION OF STRESS

In order to illustrate the disturbance of the stress field in the half-space, which results
from the attachment of the elastic membrane, we compute a,,{r, z) in the half-space along
r = 0 as a function of z and along z = 0 as a function of r. Also §,,(r) is computed for the
membrane. From (3.16) (with p = 0), (3.17) and (3.18)

o, (r,z) = J‘a A(r, z, t)q(t) dt. (8.1)

0

By use of asymptotic analysis of A(r, z, t) at its singular points r,t - 0 and z = 0,t — r
in conjunction with the numerical solution for g(t) obtained in the previous section the
integral in (8.1) was evaluated numerically. The details of this analysis may be found
in [21]. A notable result is that ¢, at z = 0 has a finite limit as r — a from r < a and has a
half-power singularity as r — a from r > a. This same singular behavior can be observed
from the exact solution (6.9) for the inextensible membrane.

Figure 6(a) and 6(b) show the half-space radial stress o,,/6, for r = 0 as a function
of z for various choices of the parameters n/y, ¢ and &. These figures indicate that the
maximum change from the uniform stress state occurs for n/y - 0, 6 =4 and ¢ = 0,
i.e. for a relatively stiff, thick, incompressible membrane on a half-space with zero Poissons
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* o008
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0-:04

0-02

0 0.2 04 0-6 0-8 -0
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FiG. 5. Dependence of load transfer function on p for various &.

ratio. The disturbance vanishes as 5/y — oo. The effect on the radial stress is negligible
at depths greater than two or three membrane radii.

Figures 7(a) and 7(b) display the half-space radial stress for z = 0 as a function of r
for various 5/y, 6 and . The effect on the radial stress is also negligible at distances more
remote than three or four radii from the center of the membrane.

T
/—17/3=|00

- n/¥=10 .

Q
N

T T T T

’

O'rr(O.Z)/O;)
\
o
o o

S
£
I

n/¥=1

-06 o=, &= 4
n/§=0 n/¥ =pa/fin

-08

-0 | | | | |
0 0-5 1-0 -5 20 25 30
z/a
Fi1G. 6(a). Dependence of half-space o,,/0, at r = 0 on z/a for various n/y.




22 M. A. HamstAaD and D. B. BoGy

005 T T T T T

A
oT=0, 0=/

n/¥ =pa/fin=10

I i L | |
¢] 05 0 I-5 20 25 30
Z/a

F1G. 6(b). Dependence of half-space ¢,,/a, at r = 0 on z/a for various §, g.

The radial stress 4,, in the membrane was also evaluated numerically for 0 < r < a
from (3.5) with p = 0, (3.6), and the numerical solution for g(f). No special difficulties
arose in these calculations after (7.4) and (7.5) were used to remove the singularity in the
load transfer function from the integrand.

-0 T T T
oc=l5,6:%

08— n/d=pal/fh 7]

06

04}

02

0ip (r0) /o

/=0

ol MY [ B

0 05 -0 15 20 25 30
r/a

F1G. 7(a). Dependence of half-space stress a,,/04 at z = 0 on r/a for various #/y.
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Q8 T

06—

o/ (r.0)/ 0

n/y =pa/fih=10

0 05 B0 -5 2-0 25 30
r/a

F1G. 7(b). Dependence of half-space stress o,,/0, at z = 0 on r/a for various g, 6.

Figures 8(a) and 8(b) show the membrane stress &,, as a function of r for various 7/y,
o and 4. Note that ¢,, — 0 as r — a as required by the boundary conditions and the fact
that no concentrated load transfer occurs at the edge of the membrane (1.e. p = 0). For

relatively weak membranes (n/y — co) the change in &, with r occurs noticeably only
near r = a.

32 T T T T
ol Gl
8= palfih

2:8

24—

Gl Ty
&
I

084~

04

n/¥ =100
I

¢} T I I
¢} 02 0-4 06 o8 +Q
r/a

F16. 8(a). Dependence of membrane stress &,,/6, on r/a for various n/y.
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2:2 T T T T T
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0 02 04 0-6 0-8 I-0

Fi1G. 8(b). Dependence of membrane stress 4,,/6, on r/a for various &, ¢.

9. APPLICATION TO STRAIN MEASUREMENTS

As seen in the previous section the attachment of an elastic membrane to an elastic
body can significantly perturb the state of deformation in the vicinity of the membrane
provided the effective stiffness ratio is small enough. This result has implications with
regard to the accuracy of the measurement of strain in a relatively weak elastic body
by use of strain gages. In order to obtain an indication of the amount of error which may
result, the ratio, R,, of the strain &,, averaged over one radial fiber of the membrane to the
uniform radial strain ¢/, in the half-space was calculated. That is, we compute

1 a
R, =- J &, dr/e,.. 9.1)

ajo
From the strain—displacement relations with (3.5), (3.6) and (3.11), R, in (9.1) can be
written in dimensionless form as

(=81 +am (' Q)
= d¢. 9.2
Co(1+8)1-ay Jo 1-0P : ©2

By use of (7.5) and the numerical solution of (7.6) the integral in (9.2) can be evaluated
numerically. Figures 9(a), (b) show the dependence of R, on the three parameters #/y, g, 6.
Figure 9(a) shows how the “‘average membrane strain’ approaches the far-field half-space
strain as #n/y increases for fixed ¢ and 4. In Fig. 9(b), n/y is fixed and ¢ and & vary. The
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F1G. 9(a). Dependence of the strain ratio R, on n/y for various o, 6.
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F1G. 9(b). Dependence of the strain ratio R, on ¢ (or ) for various n/y = pa/jth, with 6 = £ (or 6 = ).

variation of R, is slight when #/y is fixed, but R, depends strongly on #/y in a range that
depends on ¢ and 4. Clearly R, is nearest to unity when #/y is as large as possible and when
o = 2and é = 0. For example if n/y = 100, ¢ = 4 and é = 0, the value of R, is 0-980.

10. DISCUSSION AND CONCLUSIONS

In the formulation of the problem treated here, the possibility of concentrated line
load transfer between the membrane and the half-space was admitted as is evident by the
appearance of p, p, and p, in (3.5), (3.8), (3.16) and (3.19). These functions were found to
be zero by a systematic analysis of the integral equations governing the load transfer
function.

The load transfer functions were found to have square root singularities at the edge
of the membrane for both an inextensible and an elastic membrane.
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The integral equation determining the load transfer function, which is a Fredholm
equation of the first kind with a logarithmic singularity, was handled successfully by a
direct numerical technique, after the known singularity in the load transfer function was
removed. This equation was also solved exactly for the inextensible membrane.

The load transfer function as well as the stress fields in the membrane and half-space
were found to be functions of the three parameters &, ¢ and pa/fih. The variation from the
far-field uniform stress in the vicinity of the attached membrane as well as the stress in
the membrane was found to increase with increasing ¢ and decreasing ¢ and ua/fih. This
variation in the half-space is negligible at points more distant than three or four membrane
radii from the center of the membrane.

The “average membrane strain’ approximates the far-field half-space strain roughly
to within 5-15 per cent, depending on o, &, for effective stiffness ratios ua/fih greater than
about 50.
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from the National Science Foundation.
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APPENDIX
From Ref. [20] and additional calculations there follows for z # 0
z  _,| psin@+R*sing/2 .
Hy = —-tan™' R? 2
° a [p cos 8+ R? cos ¢/2 +Rsin g/2,

. .
HO = tan~! [psm 6+ R*sin (p/z:l—R'*cosqo/Z,

p cos O+ R cos /2
HY = R *sin ¢/2—pR™ ¥ cos(3¢/2—0),
1z/a r/a psin@+Rising/2] 11
H = - 2R sin g2+ 7% tan SR
0= 37/ Sine/2+5tan [pcosa+R%cos¢/2 3 rak Cos e/,

H! = ;/—a{pR‘* cos(0 — ¢/2)— R* sin /2],
H! = -p—R‘*sin(B-—-go/Z)—zR“%cos 3¢/2
r/a a ’

H? = 2 R% 3¢/2— pR* cos (0 + /2
o= (r/)z —sin 3¢/2—pR* cos (0 +¢/2)p ,

H? = — % _Zpig -4
i (r e {R cos /2 aR sin (p/2} +R7*cos @/2,
2 E +
H3 = (r/a)2 {pR™* cos(0 — 9/2)— R* sin ¢/2} — HY,
2 (pR?
3 _ 2pt
5= P /a)3{ sinf@+ 3¢/2)— p*R cos(29+qo/2)}
H=2m m, H-Lmw_m
1 r/ 0 £, 2 r/a ¥ 2y

where

andforz =10

Hg = H(1—r/a)[1~(r/a)’ ]},

H® = H(I—r/a)g-!-H(r/a-l){

I3

—al/a 11*} ,

(Jar = ]*“i“"l(

~ | &

- H(I—r/a)g— C-:-f-H(r/a— 1);{(—; sin™ ! (g)
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r/a
H% = H(l —r/a)m,
2 ([1—(r/a)*]?
H} = H(l—r;’a)(r/a)z : (;/a) } —[1={r/a)**; ,
1

2 _ I I Y
= = a1
H} = H{r/a~1) 2 [(rja)®—17*

(r/ay’
(Received 1 April 1971 ; revised 24 May 1971)

AGcrpakt—/laeTcs pelienue 3anadu Mependuu yYNpyrocTtaTuueckoil HArpylku B Kpyrioi ynpyro
memOpaHe, CBA3aHHOH HA TPAaHuUiE € MOAYNPOCTPAHCTBOM, U3 pasHoponHoro Marepuana. [loaynpoc-
TPAHCTBO HATPYXEHHOE, BAAAM OT MeMOpaHbi, COCTOSHUEM TUIOCKOTO HAMPAKEHMA, NAPANIICIbHbIM
K €r0 rpaHuue.

3amaua CBOAMTCS K CHCTEME WHTErPaJJbHbIX YPABHEHWI (dpeyroibmMa nepsoro posa ¢ jorapupmud-
€CKUMM CHHTYIAPHOCTAMM B SAPAX, A HEM3IBECTHBLIX CHJI HA rpaHulle mMexay memOpanoil u mosayn-
pocTpacTsoM. MHTerpaabhble ypasHeHnus pewatorcs Touyno. [lonysaercs pewenue 3anauu B popme
3neMenTapHbiX GYHKUMM [JIs OTPAHHYEHHOTO Cayuas HepacTaxumaemvolt membpausi. Pewarores
HHTErpanbHbie YDABHEHWS AR yOpyroH mMemBpanbl HEMOCPEACTBEHHO TNYTEM HHCHAECHHLIX METOAOB.
TMonyyaercs BO3MYLICHUE OAHOPOAHOIO TMONS HANPMKEHUA ANs NPACOSAHHEHHOW memOpaHbl, npu
HEKOTOPHIX KOMOUHANMAX HapaMeTPOB MATEPHAIA ¥ TEOMETPUH.

Omnpenensiercs HEKOTOPOE OTHOWeHHe aedopmanuu memMOpaHbl M NOAYNPOCTPAHCTBA, KOTOPOE
yKa3biBAET TOYHOCTb M3MepeHHH AedopmaLnu, NMONYHYEHHBIX M3 3KCMEPUMEHTANBHOIO aHalnia Ha-
ApsKeHUH, MYyTEM MCAOJNL3OBAHMA TPUCOEAMHCHHBAIX NATYWKOB. 3TH PE3YNbTAThl YKA3bIBAIOT, HTO
,.ycpendennas aepopmauus’’ B membpane Onuika x nomo aedopmenn B NojdynpoCTPaHCTBE TONBKO
Toraa, xorpa palph >100, sye 4, A, a—sapasiorcs monyiaem, toiunuof M paanycom membpanst a
p—MOIYJIEM CABUTA MOJYIPOCTPAHCTRA.



